Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ozone air quality measurement requirements for a geostationary satellite mission

Identifieur interne : 000054 ( PascalFrancis/Corpus ); précédent : 000053; suivant : 000055

Ozone air quality measurement requirements for a geostationary satellite mission

Auteurs : Peter Zoogman ; Daniel J. Jacob ; Kelly Chance ; LIN ZHANG ; Philippe Le Sager ; Arlene M. Fiore ; Annmarie Eldering ; XIONG LIU ; Vijay Natraj ; Susan S. Kulawik

Source :

RBID : Pascal:11-0506072

Descripteurs français

English descriptors

Abstract

We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the "true" atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV + Vis and UV + TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV + TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV + Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV + Vis + TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 45
A06       @2 39
A08 01  1  ENG  @1 Ozone air quality measurement requirements for a geostationary satellite mission
A11 01  1    @1 ZOOGMAN (Peter)
A11 02  1    @1 JACOB (Daniel J.)
A11 03  1    @1 CHANCE (Kelly)
A11 04  1    @1 LIN ZHANG
A11 05  1    @1 LE SAGER (Philippe)
A11 06  1    @1 FIORE (Arlene M.)
A11 07  1    @1 ELDERING (Annmarie)
A11 08  1    @1 XIONG LIU
A11 09  1    @1 NATRAJ (Vijay)
A11 10  1    @1 KULAWIK (Susan S.)
A14 01      @1 Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street @2 Cambridge, MA 02138 @3 USA @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 School of Engineering and Applied Sciences, Harvard University @2 Cambridge, MA @3 USA @Z 2 aut. @Z 5 aut.
A14 03      @1 Harvard Smithsonian Center for Astrophysics @2 Cambridge, MA @3 USA @Z 3 aut. @Z 8 aut.
A14 04      @1 Geophysical Fluid Dynamics Laboratory, NOAA @2 Princeton, NJ @3 USA @Z 6 aut.
A14 05      @1 Jet Propulsion Laboratory, California Institute of Technology @2 Pasadena, CA @3 USA @Z 7 aut. @Z 9 aut. @Z 10 aut.
A20       @1 7143-7150
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000505595830160
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0506072
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the "true" atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV + Vis and UV + TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV + TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV + Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV + Vis + TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.
C02 01  X    @0 001D16C
C03 01  X  FRE  @0 Ozone @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Ozone @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Ozono @2 NK @2 FX @5 01
C03 02  X  FRE  @0 Qualité air @5 02
C03 02  X  ENG  @0 Air quality @5 02
C03 02  X  SPA  @0 Calidad aire @5 02
C03 03  X  FRE  @0 Assimilation donnée @5 03
C03 03  X  ENG  @0 Data assimilation @5 03
C03 03  X  SPA  @0 Asimilación dato @5 03
C03 04  X  FRE  @0 Rayonnement UV @5 04
C03 04  X  ENG  @0 Ultraviolet radiation @5 04
C03 04  X  SPA  @0 Radiación ultravioleta @5 04
C03 05  X  FRE  @0 Transport chimique @5 05
C03 05  X  ENG  @0 Chemical transport @5 05
C03 05  X  SPA  @0 Transporte químico @5 05
C03 06  X  FRE  @0 Modélisation @5 06
C03 06  X  ENG  @0 Modeling @5 06
C03 06  X  SPA  @0 Modelización @5 06
C03 07  X  FRE  @0 Filtre Kalman @5 07
C03 07  X  ENG  @0 Kalman filter @5 07
C03 07  X  SPA  @0 Filtro Kalman @5 07
C03 08  X  FRE  @0 Observation météorologique @5 08
C03 08  X  ENG  @0 Meteorological observation @5 08
C03 08  X  SPA  @0 Observación meteorológica @5 08
C03 09  X  FRE  @0 Troposphère @5 09
C03 09  X  ENG  @0 Troposphere @5 09
C03 09  X  SPA  @0 Troposfera @5 09
C03 10  X  FRE  @0 Analyse sensibilité @5 10
C03 10  X  ENG  @0 Sensitivity analysis @5 10
C03 10  X  SPA  @0 Análisis sensibilidad @5 10
C03 11  X  FRE  @0 Couche limite @5 11
C03 11  X  ENG  @0 Boundary layer @5 11
C03 11  X  SPA  @0 Capa límite @5 11
C03 12  X  FRE  @0 Télédétection @5 12
C03 12  X  ENG  @0 Remote sensing @5 12
C03 12  X  SPA  @0 Teledetección @5 12
C03 13  X  FRE  @0 Amérique du Nord @2 NG @5 31
C03 13  X  ENG  @0 North America @2 NG @5 31
C03 13  X  SPA  @0 America del norte @2 NG @5 31
C03 14  3  FRE  @0 Oxydant photochimique @5 35
C03 14  3  ENG  @0 Photochemical oxidants @5 35
C07 01  X  FRE  @0 Amérique @2 NG
C07 01  X  ENG  @0 America @2 NG
C07 01  X  SPA  @0 America @2 NG
N21       @1 346
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0506072 INIST
ET : Ozone air quality measurement requirements for a geostationary satellite mission
AU : ZOOGMAN (Peter); JACOB (Daniel J.); CHANCE (Kelly); LIN ZHANG; LE SAGER (Philippe); FIORE (Arlene M.); ELDERING (Annmarie); XIONG LIU; NATRAJ (Vijay); KULAWIK (Susan S.)
AF : Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street/Cambridge, MA 02138/Etats-Unis (1 aut., 2 aut., 4 aut.); School of Engineering and Applied Sciences, Harvard University/Cambridge, MA/Etats-Unis (2 aut., 5 aut.); Harvard Smithsonian Center for Astrophysics/Cambridge, MA/Etats-Unis (3 aut., 8 aut.); Geophysical Fluid Dynamics Laboratory, NOAA/Princeton, NJ/Etats-Unis (6 aut.); Jet Propulsion Laboratory, California Institute of Technology/Pasadena, CA/Etats-Unis (7 aut., 9 aut., 10 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2011; Vol. 45; No. 39; Pp. 7143-7150; Bibl. 3/4 p.
LA : Anglais
EA : We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the "true" atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV + Vis and UV + TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV + TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV + Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV + Vis + TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.
CC : 001D16C
FD : Ozone; Qualité air; Assimilation donnée; Rayonnement UV; Transport chimique; Modélisation; Filtre Kalman; Observation météorologique; Troposphère; Analyse sensibilité; Couche limite; Télédétection; Amérique du Nord; Oxydant photochimique
FG : Amérique
ED : Ozone; Air quality; Data assimilation; Ultraviolet radiation; Chemical transport; Modeling; Kalman filter; Meteorological observation; Troposphere; Sensitivity analysis; Boundary layer; Remote sensing; North America; Photochemical oxidants
EG : America
SD : Ozono; Calidad aire; Asimilación dato; Radiación ultravioleta; Transporte químico; Modelización; Filtro Kalman; Observación meteorológica; Troposfera; Análisis sensibilidad; Capa límite; Teledetección; America del norte
LO : INIST-8940B.354000505595830160
ID : 11-0506072

Links to Exploration step

Pascal:11-0506072

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ozone air quality measurement requirements for a geostationary satellite mission</title>
<author>
<name sortKey="Zoogman, Peter" sort="Zoogman, Peter" uniqKey="Zoogman P" first="Peter" last="Zoogman">Peter Zoogman</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jacob, Daniel J" sort="Jacob, Daniel J" uniqKey="Jacob D" first="Daniel J." last="Jacob">Daniel J. Jacob</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chance, Kelly" sort="Chance, Kelly" uniqKey="Chance K" first="Kelly" last="Chance">Kelly Chance</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Harvard Smithsonian Center for Astrophysics</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lin Zhang" sort="Lin Zhang" uniqKey="Lin Zhang" last="Lin Zhang">LIN ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Le Sager, Philippe" sort="Le Sager, Philippe" uniqKey="Le Sager P" first="Philippe" last="Le Sager">Philippe Le Sager</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, NJ</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eldering, Annmarie" sort="Eldering, Annmarie" uniqKey="Eldering A" first="Annmarie" last="Eldering">Annmarie Eldering</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xiong Liu" sort="Xiong Liu" uniqKey="Xiong Liu" last="Xiong Liu">XIONG LIU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Harvard Smithsonian Center for Astrophysics</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Natraj, Vijay" sort="Natraj, Vijay" uniqKey="Natraj V" first="Vijay" last="Natraj">Vijay Natraj</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kulawik, Susan S" sort="Kulawik, Susan S" uniqKey="Kulawik S" first="Susan S." last="Kulawik">Susan S. Kulawik</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0506072</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0506072 INIST</idno>
<idno type="RBID">Pascal:11-0506072</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ozone air quality measurement requirements for a geostationary satellite mission</title>
<author>
<name sortKey="Zoogman, Peter" sort="Zoogman, Peter" uniqKey="Zoogman P" first="Peter" last="Zoogman">Peter Zoogman</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jacob, Daniel J" sort="Jacob, Daniel J" uniqKey="Jacob D" first="Daniel J." last="Jacob">Daniel J. Jacob</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chance, Kelly" sort="Chance, Kelly" uniqKey="Chance K" first="Kelly" last="Chance">Kelly Chance</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Harvard Smithsonian Center for Astrophysics</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lin Zhang" sort="Lin Zhang" uniqKey="Lin Zhang" last="Lin Zhang">LIN ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Le Sager, Philippe" sort="Le Sager, Philippe" uniqKey="Le Sager P" first="Philippe" last="Le Sager">Philippe Le Sager</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, NJ</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eldering, Annmarie" sort="Eldering, Annmarie" uniqKey="Eldering A" first="Annmarie" last="Eldering">Annmarie Eldering</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xiong Liu" sort="Xiong Liu" uniqKey="Xiong Liu" last="Xiong Liu">XIONG LIU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Harvard Smithsonian Center for Astrophysics</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Natraj, Vijay" sort="Natraj, Vijay" uniqKey="Natraj V" first="Vijay" last="Natraj">Vijay Natraj</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kulawik, Susan S" sort="Kulawik, Susan S" uniqKey="Kulawik S" first="Susan S." last="Kulawik">Susan S. Kulawik</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air quality</term>
<term>Boundary layer</term>
<term>Chemical transport</term>
<term>Data assimilation</term>
<term>Kalman filter</term>
<term>Meteorological observation</term>
<term>Modeling</term>
<term>North America</term>
<term>Ozone</term>
<term>Photochemical oxidants</term>
<term>Remote sensing</term>
<term>Sensitivity analysis</term>
<term>Troposphere</term>
<term>Ultraviolet radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ozone</term>
<term>Qualité air</term>
<term>Assimilation donnée</term>
<term>Rayonnement UV</term>
<term>Transport chimique</term>
<term>Modélisation</term>
<term>Filtre Kalman</term>
<term>Observation météorologique</term>
<term>Troposphère</term>
<term>Analyse sensibilité</term>
<term>Couche limite</term>
<term>Télédétection</term>
<term>Amérique du Nord</term>
<term>Oxydant photochimique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the "true" atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV + Vis and UV + TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV + TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV + Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV + Vis + TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>39</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ozone air quality measurement requirements for a geostationary satellite mission</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZOOGMAN (Peter)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JACOB (Daniel J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHANCE (Kelly)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIN ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LE SAGER (Philippe)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FIORE (Arlene M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ELDERING (Annmarie)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>XIONG LIU</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>NATRAJ (Vijay)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KULAWIK (Susan S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Harvard Smithsonian Center for Astrophysics</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, NJ</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, CA</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>7143-7150</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000505595830160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0506072</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the "true" atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV + Vis and UV + TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV + TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV + Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV + Vis + TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Assimilation donnée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Data assimilation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Asimilación dato</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transport chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical transport</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transporte químico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Filtre Kalman</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Kalman filter</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Filtro Kalman</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Observation météorologique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Meteorological observation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Observación meteorológica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Sensitivity analysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Análisis sensibilidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche limite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Boundary layer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa límite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Télédétection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Remote sensing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Teledetección</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Oxydant photochimique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photochemical oxidants</s0>
<s5>35</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>346</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0506072 INIST</NO>
<ET>Ozone air quality measurement requirements for a geostationary satellite mission</ET>
<AU>ZOOGMAN (Peter); JACOB (Daniel J.); CHANCE (Kelly); LIN ZHANG; LE SAGER (Philippe); FIORE (Arlene M.); ELDERING (Annmarie); XIONG LIU; NATRAJ (Vijay); KULAWIK (Susan S.)</AU>
<AF>Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street/Cambridge, MA 02138/Etats-Unis (1 aut., 2 aut., 4 aut.); School of Engineering and Applied Sciences, Harvard University/Cambridge, MA/Etats-Unis (2 aut., 5 aut.); Harvard Smithsonian Center for Astrophysics/Cambridge, MA/Etats-Unis (3 aut., 8 aut.); Geophysical Fluid Dynamics Laboratory, NOAA/Princeton, NJ/Etats-Unis (6 aut.); Jet Propulsion Laboratory, California Institute of Technology/Pasadena, CA/Etats-Unis (7 aut., 9 aut., 10 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2011; Vol. 45; No. 39; Pp. 7143-7150; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>We conduct an Observing System Simulation Experiment (OSSE) to test the ability of geostationary satellite measurements of ozone in different spectral regions to constrain surface ozone concentrations through data assimilation. Our purpose is to define instrument requirements for the NASA GEO-CAPE geostationary air quality mission over North America. We consider instruments using different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are taken as the "true" atmosphere to be sampled by the instruments for July 2001. The resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. The MOZART and GEOS-Chem CTMs have independent heritages and use different assimilated meteorological data sets for the same period, making for an objective OSSE. We show that hourly observations of ozone from geostationary orbit improve the assimilation considerably relative to daily observation from low earth orbit, and that broad observation over the ocean is unnecessary if the objective is to constrain surface ozone distribution over land. We also show that there is little propagation of ozone information from the free troposphere to the surface, so that instrument sensitivity in the boundary layer is essential. UV + Vis and UV + TIR spectral combinations improve greatly the information on surface ozone relative to UV alone. UV + TIR is preferable under high-sensitivity conditions with strong thermal contrast at the surface, but UV + Vis is preferable under low-sensitivity conditions. Assimilation of data from a UV + Vis + TIR instrument reduces the GEOS-Chem error for surface ozone by a factor of two. Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant to climate forcing.</EA>
<CC>001D16C</CC>
<FD>Ozone; Qualité air; Assimilation donnée; Rayonnement UV; Transport chimique; Modélisation; Filtre Kalman; Observation météorologique; Troposphère; Analyse sensibilité; Couche limite; Télédétection; Amérique du Nord; Oxydant photochimique</FD>
<FG>Amérique</FG>
<ED>Ozone; Air quality; Data assimilation; Ultraviolet radiation; Chemical transport; Modeling; Kalman filter; Meteorological observation; Troposphere; Sensitivity analysis; Boundary layer; Remote sensing; North America; Photochemical oxidants</ED>
<EG>America</EG>
<SD>Ozono; Calidad aire; Asimilación dato; Radiación ultravioleta; Transporte químico; Modelización; Filtro Kalman; Observación meteorológica; Troposfera; Análisis sensibilidad; Capa límite; Teledetección; America del norte</SD>
<LO>INIST-8940B.354000505595830160</LO>
<ID>11-0506072</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0506072
   |texte=   Ozone air quality measurement requirements for a geostationary satellite mission
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023